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Abstract: Capturing the relational information of crucial objects from the input observation has a great
influence on the performance of deep reinforcement learning algorithms. However, some related objects may
be distributed in a wide area of space or time which makes the computation of relations difficult with tra-
ditional local recurrent or convolutional operations. In this paper, we apply non-local operation into the
network structure of Importance Weighted Actor-Learner Architecture (IMPALA) to help the model captur-
ing the long-rang dependencies in space, time or even spacetime. The results in five Atari games demonstrate
that more information is extracted by computing the relation between important objects with the non-local
operation.
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1. Introduction

Reinforcement learning algorithms have recently been

firmly established as feasible approaches in several complex

tasks such as Go and Atari games. Combining traditional re-

inforcement learning algorithms with deep neural networks

sheds light on the viability of training directly from high-

dimensional game screen inputs [1] [2] [3]. However, the ob-

servation, which represents the information from the game

environment, will be insufficient and inaccurate if we treat

only one game screen data as input. For example, in the

catching game such as Pong and Breakout in Atari games [4],

a single game frame is unable to reveal the velocity and the

direction of the ball which is the most significant information

in this kind of game. Attributed to the partial observability,

the training will suffer from the problem of incomplete and

noisy state information [5] [6] which has a negative impact

on the performance of traditional reinforcement learning al-

gorithms.

There are mainly two approaches to alleviate the nega-

tive influence caused by this kind of partial observability

in current reinforcement learning algorithms. One is us-

ing lager receptive fields formed by deep stacks of convolu-

tional neural networks (CNNs) to process stacked consecu-

tive frames [1] [2] [3]. The other one is capturing sequen-

tial information with recurrent operations [5]. Both two

approaches make use of long-range information to complete

the partial observation but their operations are processed in

a local range, either in space or time. In order to capture

the long-range dependencies, these local operations need to

be applied repeatedly which causes several problems such as
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computationally inefficient and optimization difficulties [7].

Unlike the local convolutional and recurrent operations, non-

local operations capture the long-range dependencies effi-

ciently by computing the relations between two positions in

space, time or spacetime which induced us to investigate the

possible benefits from applying non-local operations into the

reinforcement learning algorithms.

In this work, we incorporate non-local neural networks [7]

into the structure of a famous deep reinforcement learning

model called IMPALA [3] to help the model captures the

long-range dependencies. Intending to conduct the non-local

operation, we propose two new network structures based on

2D CNNs and 3D CNNs respectively and investigate the

effect of non-local operation in Atari games. The results

demonstrate that the non-local operation helps the agents

extract more information from former frames by captur-

ing long-range dependencies between important objects and

thus improve the performance in some of the games. On

the other hand, overvalued outdated information also has a

negative influence on some games.

2. Related Work

Capturing long-range dependencies is important in deep

neural networks as the crucial information may distribute

over a wide area of space, time or even spacetime when

the dimension of the input increases. Intending to obtain

the velocity and the direction of the objects in the game,

Deep Q-Networks [1] receives four consecutive frames in-

stead of a single game frame as input and computes the in-

teractions between the same object’s positions in four frames

with local convolutional operations. The first convolutional

operation captures local spacetime dependencies and with

the CNNs becoming deeper, more information distributed

in long-range space will be covered in the increased recep-



tive fields. However, for some games, the observation from

four frames is still insufficient and thus long-range sequen-

tial information should be taken into account. Deep Recur-

rent Q-Networks [5] incorporates LSTM [8] into the network

structure of DQN to help the model capture the dependen-

cies in time. Although DRQN processes both convolutional

and recurrent operations, space and time dependencies are

computed separately and the relations between some posi-

tions may be forgotten during the training.

Relational reinforcement learning [9] combines self-

attention [10] with IMPALA for computing non-local inter-

actions. The model computes interactions between any two

positions regardless of their positional distance. However, it

only takes spatial information into account. For some more

complex tasks that need long-range time information such

as StarCraft II, an additional LSTM is needed.

3. Method

3.1 Deep Reinforcement Learning

Among a family of state-of-the-art reinforcement learning

algorithms, we chose a computation efficient algorithm IM-

PALA to train the agents. IMPALA uses resources more

efficiently in a single machine and also is suitable for large

scale distributed training. Instead of communicating the

gradients of parameters between workers and a central pa-

rameter server, the actors in IMPALA communicate tra-

jectories which consist of states, actions and rewards with

a centralized learner. With these trajectories, the learner

is able to access the information necessary for the training

and therefore the parameter updating and the trajectory

generation can be conducted in parallel. For the purpose

of reducing the harmful discrepancy between the latest pol-

icy updated by the learner and the out-of-date policy used

in trajectory generation, IMPALA uses a V-trace off-policy

actor-critic algorithm.

The goal of IMPALA is to learn a policy π and a value

function V π. As the learning is off-policy, the algorithm

need to learn the V π of policy π which is usually called

target policy by using trajectories generated by a different

policy µ called behaviour policy. When given a trajectory

(xt, at, rt)
t=s+n
t=s which consists of sequences of state x, the

reward r and the action a selected by policy π starting from

time s to time s + n, the n-steps V-trace target for V (xs)

at state xs is defined as:

vs = V (xs) + δsV + γcs(vs+1 − V (xs+1)), (1)

where δsV = ρs(rs + γV (xs+1)−V (xs)) represents tempo-

ral difference for V and and γ is the discount factor. Trun-

cated importance sampling weights ρs = min(ρ,
π(as|xs)
µ(as|xs)

),

cs = min(c,
π(as|xs)
µ(as|xs)

) . ρs defines the fixed point of the

update and ρ directly influences the value function the algo-

rithm converge to. In details, the algorithm will converge to

the value function of the target policy if ρ is infinite while

close to the value function of the behavior policy when ρ is

close to zero. cs...ct−1 measure how much a temporal differ-

ence at time t will influence the update at a previous time

s and c influences the speed of convergence.

At training time s, the parameters of value function θ are

updated by gradient descent in the direction of

(vs − Vθ(xs))∇θVθ(xs), (2)

which adjusts the parameters θ to reduce the difference be-

tween the output Vθ(xs) and the V-trace target vs. The

policy parameters ω are updated by policy gradient in the

direction of

ρs∇ω log πω(as|xs)(rs + γvs+1 − Vθ(xs)), (3)

which adjusts the parameters ω to increase the log-

probability of chosen action which lead to a higher state-

action value and decrease the action which have a low state-

action value. Vθ(xs) is used as a baseline to reduce the

variance of the policy gradient estimate. Furthermore, an

additional entropy bonus is added to prevent premature con-

vergence:

−∇ω
∑
a

πω(a|xs)logπω(a|xs). (4)

The overall update is conducted by summing these three

gradient with appropriate coefficients.

3.2 Non-Local Neural Networks

Non-local operations capture the long-range dependencies

by computing the response at a position as a weighted sum

of all positions in space, time or even spacetime in the input

feature maps. A generic non-local operation is defined as:

yi =
1

C(x)

∑
∀j

f(xi,xj)g(xj), (5)

where i is the index of a position whose response to be com-

puted and j is the index which represents all possible posi-

tions. x is the input feature and y is the output feature of

the same size as x. Function f computes the relation be-

tween position i and position j while function g computes

the representation of the position j. The output is normal-

ized by a factor C(x).

Among a family of versions of function f , we chose em-

bedded gaussian function to compute the relation between

two positions. The function f is defined as:

f(xi,xj) = eθ(xi)
Tφ(xj), (6)

where two embedings θ(xi) = Wθxi and φ(xj) = Wφxj .

The normalized factor is set as C(x) =
∑
∀j f(xi,xj) which

means for a given i, 1
C(x)f(xi,xj) becomes the softmax

computation along the dimension j. In our experiments,

function g is set as a linear embedding g(xj) = Wgxj for

simplicity. Here Wθ, Wφ and Wg are the weight matrices to

be learned.

The non-local operation is wrapped into a non-local block

which is defined as:

zi = Wzyi + xi, (7)



Fig. 1: Non-local block. T,H,W,C represent the number

of frames, the height of a single frame, the width of a single

frame and the number of channels respectively.

where yi is given in Eq. 5. Similar to the ideas in residual

learning [11], this equation ensures that the performance will

be no worse than the network without the non-local opera-

tion. A non-local block is illustrated in Fig. 1. As shown in

Fig. 1, the embeding functions θ, φ and g are implemented

by 3D CNNs [12] with kernel 1×1×1 and stride 1. Different

to the structure used in research [7], the number of channels

in θ, φ and g are same the to the number of channels in input

x.

3.3 Visual Rationalization

In order to explain how the non-local operations help

capture long-range dependencies, we imply sensitivity maps

which is widely used to highlight the important regions of

input images in image classification tasks [13]. A sensitivity

map Mc(x) is computed by

Mc(x) =
∂Sc(x)

∂x
, (8)

where Sc(x) represents the activation function for class c

with the input image x. ∂Sc is the derivative of Sc which

shows the importance of each pixel of x to the classification

score for class c. In our work, we compute ∂Sa(x) instead

of ∂Sc(x) where Sa(x) represents the score of chosen action

a before the last softmax layer. After we get the ∂Sa(x)
∂x ,

a ReLU [14] operation is applied to filter the features that

have a negative influence on the action of interest. So the

sensitivity map used in our experiments is finally defined as:

Ma(x) = ReLU(
∂Sa(x)

∂x
). (9)

4. Experiments

We compared different network structures with origi-

nal IMPALA in several Atari games produced by OpenAI

Gym [15]. We also conducted visual explanations to show

Fig. 2: 2D network structure with a non-local block.

how different network structures capture the long-range de-

pendencies.

4.1 Details of Training

In this work, we used the residual network [11] as the ba-

sic unit to construct our model. A residual block consisted

of two convolution layers and each of them was followed by

a ReLU [14] unit. We conducted our experiments with six

different network structures.

• The original IMPALA with the same setting as the one

proposed in research [3].

• The IMPALA-8 which has the same structure as the

original IMPALA except for the number of input

frames, treated 8 stacked consecutive frames as input

while the input of original IMPALA was 4 stacked con-

secutive frames.

• The 2D network structure which used two independent

networks to collect the information from the first four

frames and the last four frames separately.

• The 2D with a non-local block which applied non-local

operation to compute the relations between the infor-

mation from the first four frames and the last four

frames. Its network structure is shown in Fig 2.

• The 3D network structure where 2D CNNs were re-

placed by 3D CNNs for capturing more information in

time positions.

• The 3D with a non-local block whose network structure



Table 1: The network structure of 3D CNNs with non-local

block.

Layer output size

3D conv 2×3×3, stride 2,1,1 4×84×84×16

max pool 1×3×3, stride 1,2,2 4×42×42×16

res

 1× 3× 3, stride1

relu

× 2 4×42×42×16

res

 1× 3× 3, stride1

relu

× 2 4×42×42×16

3D conv 2×3×3, stride 2,1,1 2×42×42×32

max pool 1×3×3, stride 1,2,2 2×21×21×32

non-local block 2×21×21×32

res

 1× 3× 3, stride1

relu

× 2 2×21×21×32

res

 1× 3× 3, stride1

relu

× 2 2×21×21×32

3D conv 2×3×3, stride 2,1,1 1×21×21×32

max pool 1×3×3, stride 1,2,2 1×11×11×32

res

 1× 3× 3, stride1

relu

× 2 1×11×11×32

res

 1× 3× 3, stride1

relu

× 2 1×11×11×32

relu 1×11×11×32

fc 256 256

relu 256

fc action number action number

is shown in Table 1. The non-local block computed the

relations between the information captured by former

3D CNNs.

It should be noted that the 2D and the 3D network struc-

ture was the same as the structure shown in Fig 2 and table

2 respectively but without the non-local block so that we

could make a comparison between these paired structures

and observe the effect of the non-local block.

All the image date in the training was converted from

RGB color space to Gray color space and resized into 84×84

at first. The last four frames were stacked together as the

observation of current state in original IMPALA while the

last eight frames were stacked as the observation for the

other five network structures. The hyperparameters used

in the training of the four networks were totally same to

the setting in research [3]. We trained our agents in the

architecture of 32 workers and 1 centre learner on a single

machine with two NVIDIA 1080TiGPUs and one 16-core

32-processor AMD CPU.

The results of original IMPALA were the average test

scores of three different agents trained independently by the

same model with 200 million environment steps while the re-

sults of the other five network structures were the score of a

single training in the same setting. The testing environment

was similar to the training environment, except that agents

only had a single life during training while games over when

agents lost the standard number of lives in the testing envi-

ronment. The average score over 200 plays was recorded as

the final score of the agents in the test environment.

4.2 Atari games

The Atari games have been used to evaluate most recent

deep reinforcement learning algorithms. We chose five Atari

games as our experiment environments and the results are

shown in Table 2. The eighth column of the table shows the

results in research [3] which are different from the results

of our IMPALA shown in the second column. We investi-

gate that the differences are introduced by some parameters

such as the number of workers that are not written in the

paper [3]. Because our experiments are based on our im-

plementation, we only concentrate on the results of our six

network structures. From Table 2, we can find that ob-

serving from more frames has a positive influence on the

training of agents in four of five games. Collecting infor-

mation from two independent networks improves the per-

formance in three games but also affects the training of two

games, Centipede and Krull, in a negative way. The 3D net-

work structure has a similar performance, better in Breakout

and Seaquest, a little worse in Amidar, Centipede and Krull

compared to the IMPALA-8. As the 2D and 3D network

structure process the input frames in totally different ways

compared to the original IMPALA, we think the difference

of performances in five different games is reasonable. When

we concentrate on the effect of the non-local operation, we

can find that in Centipede, Krull and Seaquest, the non-

local operation brings an improvement in the final score but

decreases the scores in Amidar and Breakout.

The training procedure is shown in the Fig 3. The scores

shown in the figures are computed by the exponential mov-

ing average [16] whose decrease coefficient is set to 0.9 and

then be smoothed with the Savitzky-Golay filter [17]. In

Centipede and Seaquest, the IMPALA showed unstable per-

formance and the results fluctuated in a non negligible range.

In Centipede, the results of three independent training were

5691.00, 7873.71 and 6586.15. And in Seaquest the results

were 1433.40, 1903.90 and 1557.40. We think the fluctuation

also happened during the training of the other five network

structures and we will increase the number of experiments

to get more accurate results in the future.



Table 2: The score of agents trained by different network structures.

Game IMPALA IMPALA-8 2D 2D with

non-local

3D 3D with

non-local

IMPALA [3]

Amidar 757.45 791.26 1106.30 951.96 592.28 480.24 1554.79

Breakout 473.00 473.14 491.39 470.07 500.67 449.46 787.34

Centipede 6716.95 5317.63 1920.87 4645.31 4209.75 5522.83 11049.75

Krull 5966.99 7755.75 5798.38 7609.27 6755.00 7282.88 8147.70

Seaquest 1631.57 1984.10 2562.35 2612.40 2130.60 2706.10 1753.20

4.3 Visual Rationalization

To explain how the additional non-local block influences

the training, we visualized the important regions where the

agents base their decisions in the game screen by sensitivity

map. If the trained agents are able to capture the long-range

dependencies, the regions should cover the crucial objects in

all input frames. The results are shown in Fig 5. As the

original IMPALA treated four frames as input, the images

of IMPALA shown in Fig 5 were taken from two observations

separated from eight consecutive frames which were the one

observation of the other network structures. As shown in

Fig 5, the IMPALA concentrates on the important objects,

the dangerous fish and the people who need to be rescued,

successfully when observes from four frames but loses the

objects when the input is increased to eight frames. In the

2D CNNs based network structures, both two structure cov-

ers the important objects successfully which corresponds to

the similar results shown in Table 2. In contrast to the fail-

ure of capturing the important objects in former frames with

baseline 3D network structure, the long-range dependencies

are captured by computing relations between important ob-

jects in different frames with the non-local operation in the

3D network with non-local structure, which helps the agent

concentrate on the objects in each frame successfully.

These results provide evidence that the non-local oper-

ation helps the agent capture more information from the

input frames, especially from the former frames, which may

be also harmful to some games. We can find that the agents

trained with the non-local operation consider the informa-

tion from former frames as important as the newest frame in

Fig 4, which may confuse the agent and result in a wrong ac-

tion decided based on outdated information. We think this

is the reason for the decrease in game Amidar and Breakout.

5. Discussion

In this paper, we investigate the effectiveness of apply-

ing the non-local operation into the network structures of

IMPALA to help the model capture the long-range depen-

dencies. We also propose two network structures based on

2D and 3D CNNs respectively and test their performance

in Atari games. The results show that the non-local oper-

ation helps the agents capture the long-range dependencies

between different frames and thus influence the performance

in a positive way. On the other hand, the negative influence

is also observed which induced us to conduct more exper-

iments in the future. As the increased number of param-

eters makes this method computational expensive, finding

a more effective network structure is necessary for future

work. We choose five totally different Atari games in this

paper, which makes it difficult to demonstrate the effect of

capturing long-range dependencies. So we are also planning

to conduct experiments in more suitable environments.
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Fig. 4: The important regions in eight consecutive environment frames of game Seaquest from agents trained by six different

network structures.


